

IMPACCT PROJECT

UNIVERSITY OF NOTRE DAME

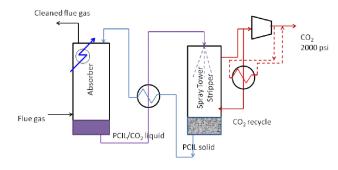
PHASE-CHANGING IONIC LIQUIDS

PROJECT TITLE: CO₂ Capture with Ionic Liquids Involving Phase Change

ORGANIZATION: The University of Notre Dame LOCATION: Notre Dame, IN

PROGRAM: IMPACCT ARPA-E AWARD: \$2,559,562

TECH TOPIC: Carbon Capture PROJECT TERM: 7/1/10 – 6/30/13


WEBSITE: http://energy.nd.edu/

CRITICAL NEED

Coal-fired power plants provide nearly 50% of all electricity in the U.S. While coal is a cheap and abundant natural resource, its continued use contributes to rising carbon dioxide (CO₂) levels in the atmosphere. Capturing and storing this CO₂ would reduce atmospheric greenhouse gas levels while allowing power plants to continue using inexpensive coal. Carbon capture and storage represents a significant cost to power plants that must retrofit their existing facilities to accommodate new technologies. Reducing these costs is the primary objective of ARPA-E's carbon capture program.

PROJECT INNOVATION + ADVANTAGES

Notre Dame is developing a new CO_2 capture process that uses special ionic liquids (ILs) to remove CO_2 from the gas exhaust of coal-fired power plants. ILs are salts that are normally liquid at room temperature, but Notre Dame has discovered a new class of ILs that are solid at room temperature and change to liquid when they bind to CO_2 . Upon heating, the CO_2 is released for storage, and the ILs re-solidify and donate some of the heat generated in the process to facilitate further CO_2 release. These new ILs can reduce the energy required to capture CO_2 from the exhaust stream of a coal-fired power plant when compared to state-of-the-art technology.

IMPACT

If successful, Notre Dame's special ILs would enable the reduction of significant greenhouse gas emissions while helping to position the U.S. as a global industry leader in carbon capture and storage technology.

- SECURITY: Enabling continued use of domestic coal for electricity generation will preserve the stability of the electric grid.
- ENVIRONMENT: Carbon capture technology could prevent more than 800 million tons of CO₂ from being emitted into the atmosphere each year.
- ECONOMY: Improving the cost-effectiveness of carbon capture methods will minimize added costs to homeowners and businesses using electricity generated by coal-fired power plants for the foreseeable future.
- JOBS: Retrofitting coal-fired power plants to capture and store carbon dioxide could create jobs in the U.S. manufacturing, construction, and engineering sectors.

CONTACTS

ARPA-E Program Director: Project Contact:
Dr. Karma Sawyer, Dr. Joan Brennecke,

karma.sawyer@hq.doe.gov jfb@nd.edu

